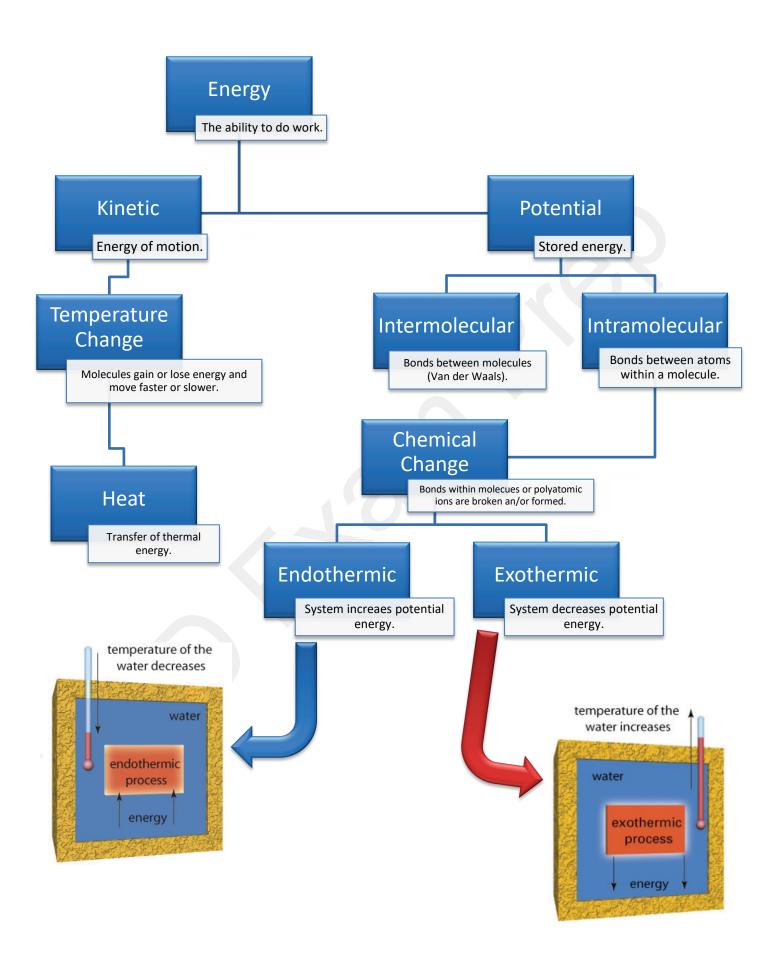

SAMPLE of Diploma Prep Materials



Chemistry 30

Unit A

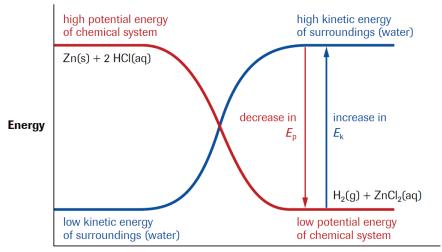
Thermochemical Changes

Heat Transfer and Calorimetry

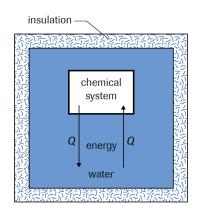
• Thermal energy – the kinetic energy (E_k) of the entities of a substance. Thermal energy increases with temperature.

$$Q = mc\Delta t$$

- **Temperature** a measure of the average kinetic energy of the entities of a substance
- **Heat** thermal energy <u>transferred</u> between systems. Heat is *not* possessed by a system.
- Chemical potential energy (E_p) energy stored in chemical bonds
- Enthalpy (H) the total kinetic and potential energy in a chemical system
- Change in enthalpy $(\Delta_r H)$ difference in enthalpy (assume the difference in chemical potential energy) between the products and reactants. THE TEMPERATURE OF THE SYSTEM DOES NOT CHANGE!


$$\Delta_{\rm r}H = H_{\rm products} - H_{\rm reactants}$$

• Molar change in enthalpy $(\Delta_r H_m)$ – change in energy per mole of a substance undergoing a specific reaction


$$\Delta_r H = n \Delta_r H_m$$

Subscript	Meaning
г	any reaction specified
С	complete combustion
f	formation
d	decomposition
sol	solution
dil	dilution

An Exothermic Reaction

Reaction coordinate

Example 1

Methylpropane, $C_4H_{10}(g)$, is used as a lighter fluid. When 1.80 g of methylpropane is burned in a calorimeter, the temperature of 2.60 kg of water changed from 20.0 °C to 29.7 °C.

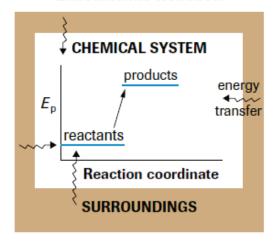
a) Calculate the amount of thermal energy absorbed by the water.

b) Determine the enthalpy change for the combustion of 1.80 g of methylpropane.

c) Determine the molar enthalpy of combustion for methylpropane.

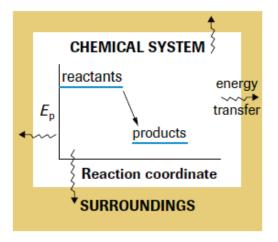
Example 2

A student is asked to prepare a 50.0 mL solution of ammonium nitrate. If the molar enthalpy of solution of ammonium nitrate is +25.0 kJ/mol, determine the mass of ammonium nitrate that should be dissolved to decrease the temperature of the water by 7.55 °C?


Example 3

150 mL of 0.200 mol/L HCl(aq) is added to 150 mL of 0.200 mol/L NaOH(aq). If the initial temperature of both solutions is 25.0°C and the final temperature of the mixture after the reaction was complete was 27.1°C, determine the molar enthalpy of neutralization for HCl(aq).

Four Ways of Communicating Enthalpy Changes

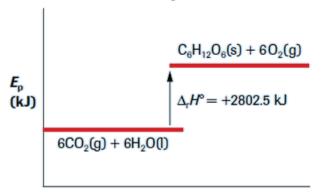

			ENDOTHERMIC Decomposition of Water	EXOTHERMIC Combustion of Magnesium	
1)	Molar Enthalpy	$\Delta_{\rm d}H_{\rm m} = +285.8~{\rm kJ/mol}$		$\Delta_{\rm c}H_{\rm m} = -601.6 \text{ kJ/mol}$	
2)	Enthalpy Change	$H_2O(1) \rightarrow H_2(g) + \frac{1}{2}O_2(g) \Delta_dH^{\circ} = +285.8 \text{ kJ}$		$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$ $\Delta_{\epsilon}H^{\circ} = -601.6 \text{ kJ}$	
3)	Term in a Balanced Equation	$H_2O(1) + 285.8 \text{ kJ} \rightarrow H_2(g) + \frac{1}{2}O_2(g)$		$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s) + 601.6 \text{ kJ}$	
4)	Chemical Potential Energy Diagram	Е _р (kJ)	Decomposition of Water $H_2(g) + \frac{1}{2}O_2(g)$ $\Delta_d H = +285.8 \text{ kJ}$ $H_2O(l)$ Reaction coordinate	Combustion of Magnesium $Mg(s) + \frac{1}{2}O_2(g)$ $\Delta_c H = -601.6 \text{ kJ}$ $MgO(s)$ Reaction coordinate	

Endothermic Reaction

Surroundings are cooled as chemical system absorbs energy.

Exothermic Reaction

Surroundings are warmed as chemical system releases energy.

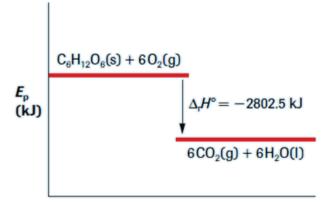


The Sun is a Major Source of Stored Chemical Energy on Earth

- The standard molar enthalpy for photosynthesis of glucose: $\Delta_r H_m^\circ = +2802.5 \text{ kJ/mol}$ $C_6 H_{12} O_6$
- 2 $6CO_2(g) + 6H_2O(l) \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$ $\Delta_r H^\circ = +2802.5 \text{ kJ}$
- 3 $6CO_2(g) + 6H_2O(l) + 2802.5 \text{ kJ} \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$
- 4 Potential energy diagram for photosynthesis:

Photosynthesis

Photosynthesis



Cellular Respiration

- The standard molar enthalpy for cellular respiration of glucose: $\Delta_r H_m^{\circ} = -2802.5 \text{ kJ/mol}$ $C_6 H_{12} O_6$
- 2 $C_6H_{12}O_6(g) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$ $\Delta_rH^\circ = -2802.5 \text{ kJ}$
- 3 $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l) + 2802.5 \text{ kJ}$
- Potential energy diagram for cellular respiration:

Cellular Respiration

Reaction coordinate